Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
J Mater Chem B ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38596904

RESUMO

Numerous studies have shown that there are multiple neural activities involved in the process of bone resorption and bone regeneration, and promoting osteogenesis by promoting neural network reconstruction is an effective strategy for repairing critical size bone defects. However, traumatic bone defects often cause activation of the sympathetic nervous system (SNS) in the damaged area, releasing excess catecholamines (CAs), resulting in a decrease in the rate of bone formation. Herein, a 3D-printed scaffold loaded with propranolol (PRN) is proposed to reduce CA concentrations in bone defect areas and promote bone regeneration through drug release. For this purpose, PRN-loaded methacrylated gelatin (GelMA) microspheres were mixed with low-concentration GelMA and perfused into a 3D-printed porous hydroxyapatite (HAp) scaffold. By releasing PRN, which can block ß-adrenergic receptors, it hinders the activation of sympathetic nerves and inhibits the release of excess CA by the SNS. At the same time, the composite scaffold recruits bone marrow mesenchymal stem cells (BMSCs) and promotes the differentiation of BMSCs in the direction of osteoblasts, which effectively promotes bone regeneration in the rabbit femoral condyle defect model. The results of the study showed that the release of PRN from the composite scaffold could effectively hinder the activation of sympathetic nerves and promote bone regeneration, providing a new strategy for the treatment of bone defects.

2.
Acta Biomater ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513723

RESUMO

The osteoarthritic (OA) environment within articular cartilage poses significant challenges, resulting in chondrocyte dysfunction and cartilage matrix degradation. While intra-articular injections of anti-inflammatory drugs, biomaterials, or bioactive agents have demonstrated some effectiveness, they primarily provide temporary relief from OA pain without arresting OA progression. This study presents an injectable cartilage-coating composite, comprising hyaluronic acid and decellularized cartilage matrix integrated with specific linker polymers. It enhances the material retention, protection, and lubrication on the cartilage surface, thereby providing an effective physical barrier against inflammatory factors and reducing the friction and shear force associated with OA joint movement. Moreover, the composite gradually releases nutrients, nourishing OA chondrocytes, aiding in the recovery of cellular function, promoting cartilage-specific matrix production, and mitigating OA progression in a rat model. Overall, this injectable cartilage-coating composite offers promising potential as an effective cell-free treatment for OA. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) in the articular cartilage leads to chondrocyte dysfunction and cartilage matrix degradation. This study introduces an intra-articular injectable composite material (HDC), composed of decellularized cartilage matrix (dECMs), hyaluronan (HA), and specially designed linker polymers to provide an effective cell-free OA treatment. The linker polymers bind HA and dECMs to form an integrated HDC structure with an enhanced degradation rate, potentially reducing the need for frequent injections and associated trauma. They also enable HDC to specifically coat the cartilage surface, forming a protective and lubricating layer that enhances long-term retention, acts as a barrier against inflammatory factors, and reduces joint movement friction. Furthermore, HDC nourishes OA chondrocytes through gradual nutrient release, aiding cellular function recovery, promoting cartilage-specific matrix production, and mitigating OA progression.

3.
Small ; : e2310689, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421135

RESUMO

Improving the interconnected structure and bioregulatory function of natural chitosan is beneficial for optimizing its performance in bone regeneration. Here, a facile immunoregulatory constructional design is proposed for developing instructive chitosan by directional freezing and alkaline salting out. The molecular dynamics simulation confirmed the assembly kinetics and structural features of various polyphenols and chitosan molecules. Along with the in vitro anti-inflammatory, antioxidative, promoting bone mesenchymal stem cell (BMSC) adhesion and proliferation performance, proanthocyanidin optimizing chitosan (ChiO) scaffold presented an optimal immunoregulatory structure with the directional microchannel. Transcriptome analysis in vitro further revealed the cytoskeleton- and immune-regulation effect of ChiO are the key mechanism of action on BMSC. The rabbit cranial defect model (Φ = 10 mm) after 12 weeks of implantation confirmed the significantly enhanced bone reconstitution. This facile immunoregulatory directional microchannel design provides effective guidance for developing inducible chitosan scaffolds.

4.
Adv Healthc Mater ; : e2303600, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303119

RESUMO

Bone regenerative scaffolds with a bionic natural bone hierarchical porous structure provide a suitable microenvironment for cell migration and proliferation. Here, a bionic scaffold (DP-PLGA/HAp) with directional microchannels is prepared by combining 3D printing and directional freezing technology. The 3D printed framework provides structural support for new bone tissue growth, while the directional pore embedded in the scaffolds provides an express lane for cell migration and nutrition transport, facilitating cell growth and differentiation. The hierarchical porous scaffolds achieve rapid infiltration and adhesion of bone marrow mesenchymal stem cells (BMSCs) and improve the expression of osteogenesis-related genes. The rabbit cranial defect experiment presents significant new bone formation, demonstrating that DP-PLGA/HAp offers an effective means to guide cranial bone regeneration. The combination of 3D printing and directional freezing technology might be a promising strategy for developing bone regenerative biomaterials.

5.
J Mater Chem B ; 12(9): 2282-2293, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38323909

RESUMO

Skin has a protein microenvironment dominated by functional collagen fibers, while oxidative stress caused by injury can greatly slow down the progress of wound healing. Here, methacrylated dopamine was incorporated into methacrylated silk fibroin molecule chains to develop an injectable hydrogel with photocuring properties for constructing an antioxidant skin protein microenvironment. This silk fibroin-based hydrogel (SF-g-SDA) showed good tensile and adhesion properties for adapting to the wound shape and skin movement, exhibited stable mechanical properties, good biodegradability and cytocompatibility, and promoted cell adhesion and vascularization in vitro. In addition, its phenolic hydroxyl-mediated antioxidant properties effectively protected cells from damage caused by oxidative stress and supported normal cellular life activities. In animal experiments, SF-g-SDA achieved better skin repair effects in comparison to commercial Tegaderm™ in vivo, showing its ability to accelerate wound healing, improve collagen deposition and alignment in newly fabricated tissues, and promote neovascularization and hair follicle formation. These experimental results indicated that the SF-g-SDA hydrogel is a promising wound dressing.


Assuntos
Fibroínas , Animais , Fibroínas/farmacologia , Antioxidantes/farmacologia , Hidrogéis/farmacologia , Cicatrização , Colágeno/metabolismo
6.
Adv Mater ; : e2310876, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321645

RESUMO

Structural and physiological cues provide guidance for the directional migration and spatial organization of endogenous cells. Here, a microchannel scaffold with instructive niches is developed using a circumferential freeze-casting technique with an alkaline salting-out strategy. Thereinto, polydopamine-coated nano-hydroxyapatite is employed as a functional inorganic linker to participate in the entanglement and crystallization of chitosan molecules. This scaffold orchestrates the advantage of an oriented porous structure for rapid cell infiltration and satisfactory immunomodulatory capacity to promote stem cell recruitment, retention, and subsequent osteogenic differentiation. Transcriptomic analysis as well as its in vitro and in vivo verification demonstrates that essential colony-stimulating factor-1 (CSF-1) factor is induced by this scaffold, and effectively bound to the target colony-stimulating factor-1 receptor (CSF-1R) on the macrophage surface to activate the M2 phenotype, achieving substantial endogenous bone regeneration. This strategy provides a simple and efficient approach for engineering inducible bone regenerative biomaterials.

7.
Nat Commun ; 15(1): 1488, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374253

RESUMO

The assembly of oligopeptide and polypeptide molecules can reconstruct various ordered advanced structures through intermolecular interactions to achieve protein-like biofunction. Here, we develop a "molecular velcro"-inspired peptide and gelatin co-assembly strategy, in which amphiphilic supramolecular tripeptides are attached to the molecular chain of gelatin methacryloyl via intra-/intermolecular interactions. We perform molecular docking and dynamics simulations to demonstrate the feasibility of this strategy and reveal the advanced structural transition of the co-assembled hydrogel, which brings more ordered ß-sheet content and 10-fold or more compressive strength improvement. We conduct transcriptome analysis to reveal the role of co-assembled hydrogel in promoting cell proliferation and chondrogenic differentiation. Subcutaneous implantation evaluation confirms considerably reduced inflammatory responses and immunogenicity in comparison with type I collagen. We demonstrate that bone mesenchymal stem cells-laden co-assembled hydrogel can be stably fixed in rabbit knee joint defects by photocuring, which significantly facilitates hyaline cartilage regeneration after three months. This co-assembly strategy provides an approach for developing cartilage regenerative biomaterials.


Assuntos
Cartilagem Articular , Cartilagem , Animais , Coelhos , Simulação de Acoplamento Molecular , Cartilagem/fisiologia , Hidrogéis/química , Materiais Biocompatíveis/química , Diferenciação Celular , Peptídeos , Conformação Proteica , Engenharia Tecidual , Condrogênese
8.
Adv Mater ; 36(16): e2312559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266145

RESUMO

Abnormal silencing of fibroblast growth factor (FGF) signaling significantly contributes to joint dysplasia and osteoarthritis (OA); However, the clinical translation of FGF18-based protein drugs is hindered by their short half-life, low delivery efficiency and the need for repeated articular injections. This study proposes a CRISPR/Cas9-based approach to effectively activate the FGF18 gene of OA chondrocytes at the genome level in vivo, using chondrocyte-affinity peptide (CAP) incorporated hybrid exosomes (CAP/FGF18-hyEXO) loaded with an FGF18-targeted gene-editing tool. Furthermore, CAP/FGF18-hyEXO are encapsulated in methacrylic anhydride-modified hyaluronic (HAMA) hydrogel microspheres via microfluidics and photopolymerization to create an injectable microgel system (CAP/FGF18-hyEXO@HMs) with self-renewable hydration layers to provide persistent lubrication in response to frictional wear. Together, the injectable CAP/FGF18-hyEXO@HMs, combined with in vivo FGF18 gene editing and continuous lubrication, have demonstrated their capacity to synergistically promote cartilage regeneration, decrease inflammation, and prevent ECM degradation both in vitro and in vivo, holding great potential for clinical translation.


Assuntos
Cartilagem Articular , Exossomos , Microgéis , Osteoartrite , Humanos , Condrócitos , Lubrificação , Exossomos/metabolismo , Edição de Genes , Cartilagem Articular/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/uso terapêutico , Osteoartrite/metabolismo
9.
Regen Biomater ; 11: rbad082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213739

RESUMO

Biomaterials with surface nanostructures effectively enhance protein secretion and stimulate tissue regeneration. When nanoparticles (NPs) enter the living system, they quickly interact with proteins in the body fluid, forming the protein corona (PC). The accurate prediction of the PC composition is critical for analyzing the osteoinductivity of biomaterials and guiding the reverse design of NPs. However, achieving accurate predictions remains a significant challenge. Although several machine learning (ML) models like Random Forest (RF) have been used for PC prediction, they often fail to consider the extreme values in the abundance region of PC absorption and struggle to improve accuracy due to the imbalanced data distribution. In this study, resampling embedding was introduced to resolve the issue of imbalanced distribution in PC data. Various ML models were evaluated, and RF model was finally used for prediction, and good correlation coefficient (R2) and root-mean-square deviation (RMSE) values were obtained. Our ablation experiments demonstrated that the proposed method achieved an R2 of 0.68, indicating an improvement of approximately 10%, and an RMSE of 0.90, representing a reduction of approximately 10%. Furthermore, through the verification of label-free quantification of four NPs: hydroxyapatite (HA), titanium dioxide (TiO2), silicon dioxide (SiO2) and silver (Ag), and we achieved a prediction performance with an R2 value >0.70 using Random Oversampling. Additionally, the feature analysis revealed that the composition of the PC is most significantly influenced by the incubation plasma concentration, PDI and surface modification.

10.
Regen Biomater ; 11: rbad111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173764

RESUMO

Titanium (Ti) implants have been extensively used after surgical operations. Its surface bioactivity is of importance to facilitate integration with surrounding bone tissue, and ultimately ensure stability and long-term functionality of the implant. The plasmid DNA-activated matrix (DAM) coating on the surface could benefit osseointegration but is still trapped by poor transfection for further application, especially on the bone marrow mesenchymal stem cells (BMSCs) in vivo practical conditions. Herein, we constructed a DAM on the surface of fibrous-grained titanium (FG Ti) composed of phase-transition lysozyme (P) as adhesive, cationic arginine-rich lipid (RLS) as the transfection agent and plasmid DNA (pDNA) for bone morphology protein 2 (BMP2) expression. The cationic lipid RLS improved up to 30-fold higher transfection than that of commercial reagents (Lipofectamine 2000 and polyethyleneimine) on MSC. And importantly, Ti surface topology not only promotes the DAM to achieve high transfection efficiency (∼75.7% positive cells) on MSC due to the favorable combination but also reserves its contact induction effect for osteoblasts. Upon further exploration, the fibrous topology on FG Ti could boost pDNA uptake for gene transfection, and cell migration in MSC through cytoskeleton remodeling and induce contact guidance for enhanced osteointegration. At the same time, the cationic RLS together with adhesive P were both antibacterial, showing up to 90% inhibition rate against Escherichia coli and Staphylococcus aureus with reduced adherent microorganisms and disrupted bacteria. Finally, the FG Ti-P/pBMP2 implant achieved accelerated bone healing capacities through highly efficient gene delivery, aligned surface topological structure and increased antimicrobial properties in a rat femoral condylar defect model.

11.
Nat Commun ; 15(1): 735, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272886

RESUMO

Drug-eluting stent implantation suppresses the excessive proliferation of smooth muscle cells to reduce in-stent restenosis. However, the efficacy of drug-eluting stents remains limited due to delayed reendothelialization, impaired intimal remodeling, and potentially increased late restenosis. Here, we show that a drug-free coating formulation functionalized with tailored recombinant humanized type III collagen exerts one-produces-multi effects in response to injured tissue following stent implantation. We demonstrate that the one-produces-multi coating possesses anticoagulation, anti-inflammatory, and intimal hyperplasia suppression properties. We perform transcriptome analysis to indicate that the drug-free coating favors the endothelialization process and induces the conversion of smooth muscle cells to a contractile phenotype. We find that compared to drug-eluting stents, our drug-free stent reduces in-stent restenosis in rabbit and porcine models and improves vascular neointimal healing in a rabbit model. Collectively, the one-produces-multi drug-free system represents a promising strategy for the next-generation of stents.


Assuntos
Reestenose Coronária , Stents Farmacológicos , Suínos , Animais , Coelhos , Reestenose Coronária/prevenção & controle , Stents , Colágeno , Cicatrização
12.
ACS Appl Mater Interfaces ; 16(4): 4395-4407, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38247262

RESUMO

Sharply rising oxidative stress and ineffectual angiogenesis have imposed restrictions on diabetic wound healing. Here, a photothermal-responsive nanodelivery platform (HHC) was prepared by peroxidase (CAT)-loaded hollow copper sulfide dispersed in photocurable methacrylamide hyaluronan. The HHC could scavenge reactive oxygen species (ROS) and promote angiogenesis by photothermally driven CAT and Cu2+ release. Under near-infrared light irradiation, the HHC presented safe photothermal performance (<43 °C), efficient bacteriostatic ability against E. coli and S. aureus. It could rapidly release CAT into the external environment for decomposing H2O2 and oxygen generation to alleviate oxidative stress while promoting fibroblast migration and VEGF protein expression of endothelial cells by reducing intracellular ROS levels. The nanodelivery platform presented satisfactory therapeutic effects on murine diabetic wound healing by modulating tissue inflammation, promoting collagen deposition and increasing vascularization in the neodermis. This HHC provided a viable strategy for diabetic wound dressing design.


Assuntos
Cobre , Diabetes Mellitus , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Cobre/uso terapêutico , Células Endoteliais/metabolismo , Staphylococcus aureus/metabolismo , Escherichia coli/metabolismo , 60489 , Peróxido de Hidrogênio , Sulfetos/farmacologia , Antibacterianos/uso terapêutico , Hidrogéis
13.
J Ethnopharmacol ; 321: 117480, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995823

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Heng-Gu-Gu-Shang-Yu-He-Ji (Osteoking, OK) is a well-known formula for fracture therapy. In clinic, OK is effective in treating fractures while alleviating osteoporosis (OP) symptoms. However, active components of OK and the associated molecular mechanisms remain not fully elucidated. AIM OF THE STUDY: This study aims to systematically evaluate the anti-osteoporosis efficacy of OK and for the first time combine network pharmacology with high-throughput whole gene transcriptome sequencing to study its underlying mechanism. MATERIALS AND METHODS: In this study, the osteoporosis model was established by the castration of both ovaries. The level of serum bone turnover factor was detected by enzyme-linked immunosorbent assay. Micro-CT and HE staining were used to observe the changes of bone histopathology, and nano-indentation technique was used to detect the biomechanical properties of rat bone. The main active Chemical components of OK were identified using UPLC-DAD. Efficacy verification and mechanism exploration were conducted by network pharmacology, molecular docking, whole gene transcriptomics and in vivo experiments. RESULTS: In our study, OK significantly improved bone microarchitecture and bone biomechanical parameters in OVX rats, reduced osteoclast indexes such as C-telopeptide of type I collage (CTX-I) and increased Osteoprotegerin (OPG)/Receptor activator of NF-κB ligand (RANKL) levels. Mechanistically, PI3K/AKT pathway was a common pathway for genome enrichment analysis (KEGG) of both network pharmacology and RNA-seq studies. G protein-ß-like protein (GßL), Ribosomal-protein S6 kinase homolog 2 (S6K2), and Phosphoinositide 3-kinase (PI3K) appeared differentially expression in the PI3K-AKT signaling pathway. These results were also confirmed by qRT-PCR and immunohistochemistry. CONCLUSIONS: OK may be used to treat osteoporosis, at least partly by activating PI3K/AKT/mTORC1 signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Osteoporose , Ratos , Animais , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Farmacologia em Rede , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Osteoporose/metabolismo , Perfilação da Expressão Gênica , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
14.
Inorg Chem ; 63(1): 689-705, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38146716

RESUMO

Biomolecules play a vital role in the regulation of biomineralization. However, the characteristics of practical nucleation domains are still sketchy. Herein, the effects of the representative biomolecular sequence and conformations on calcium phosphate (Ca-P) nucleation and mineralization are investigated. The results of computer simulations and experiments prove that the line in the arrangement of dual acidic/essential amino acids with a single interval (Bc (Basic) -N (Neutral) -Bc-N-Ac (Acidic)- NN-Ac-N) is most conducive to the nucleation. 2α-helix conformation can best induce Ca-P ion cluster formation and nucleation. "Ac- × × × -Bc" sequences with α-helix are found to be the features of efficient nucleation domains, in which process, molecular recognition plays a non-negligible role. It further indicates that the sequence determines the potential of nucleation/mineralization of biomolecules, and conformation determines the ability of that during functional execution. The findings will guide the synthesis of biomimetic mineralized materials with improved performance for bone repair.


Assuntos
Biomineralização , Fosfatos de Cálcio , Fosfatos de Cálcio/química , Conformação Molecular
15.
Mater Today Bio ; 23: 100891, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149016

RESUMO

The strategy of coupling the micro-vibration mechanical field with Ca/P ceramics to optimize the osteogenic microenvironment and enhance the functional activity of the cells can significantly improve the bone regeneration of the graft. However, the regulation mode and mechanism of this coupling strategy are not fully understood at present. This study investigated the influence of different waveforms of the electrical signals driving Microvibration Stimulation (MVS) on this coupling effect. The results showed that there were notable variances in calcium phosphate dissolution and redeposition, protein adsorption, phosphorylation of ERK1/2 and FAK signal pathways and activation of calcium channels such as TRPV1/Piezo1/Piezo2 in osteogenic microenvironment under the coupling action of hydroxyapatite (HA) ceramics and MVS driven by different electrical signal waveforms. Ultimately, these differences affected the osteogenic differentiation process of cells by a way of time-sequential regulation. Square wave-MVS coupled with HA ceramic can significantly delay the high expression time of characteristic genes (such as Runx2, Col-I and OCN) in MC3T3-E1 cells during in vitro the early, middle and late stage of differentiation, while maintain the high proliferative activity of MC3T3-E1 cells. Triangle wave signal-MVS coupled with HA ceramic promoted the osteogenic differentiation of cells in the early and late stages. Sine wave-MVS shows the effect on the process of osteogenic differentiation in the middle stage (such as the up-regulation of ALP synthesis and Col-I gene expression in the early stage of stimulation). In addition, Square wave-MVS showed the best coupling effect. The bone graft constructed under square wave-MVS formed new bone tissue and mature blood vessels only 2 weeks after subcutaneous implantation in nude mice. Our study provides a new non-invasive regulation model for precisely optimizing the osteogenic microenvironment, which can accelerate bone regeneration in bone grafts more safely, accurately and reliably.

16.
ACS Appl Mater Interfaces ; 15(46): 53859-53870, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37909306

RESUMO

Cancer-derived extracellular vesicles (EVs) have shown great potential in the field of cancer metastasis research. However, inefficient EV biofabrication has become a barrier to large-scale research on cancer-derived EVs. Here, we presented a novel method to enhance the biofabrication of cancer-derived EVs via audible acoustic wave (AAW), which yielded mechanical stimuli, including surface acoustic pressure and surface stress. Compared to EV yield in conventional static culture, AAW increased the number of cancer-derived EVs by up to 2.5-folds within 3 days. Furthermore, cancer-derived EVs under AAW stimulation exhibited morphology, size, and zeta potential comparable to EVs generated in conventional static culture, and more importantly, they showed the capability to promote cancer cell migration and invasion under both 2D and 3D culture conditions. Additionally, the elevation in EV biofabrication correlated with the activation of the ESCRT pathway and upregulation of membrane fusion-associated proteins (RAB family, SNARE family, RHO family) in response to AAW stimulation. We believe that AAW represents an attractive approach to achieving high-quantity and high-quality production of EVs and that it has the potential to enhance EV biofabrication from other cell types, thereby facilitating EV-based scientific and translational research.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Som
17.
Front Cell Dev Biol ; 11: 1277686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941898

RESUMO

Osteoimmunology is a concept involving molecular and cellular crosstalk between the skeletal and immune systems. Toll-like receptors (TLRs) are widely expressed both on mesenchymal stromal cells (MSCs), the hematopoietic cells, and immune cells in the osteogenic microenvironment for bone development or repair. TLRs can sense both exogenous pathogen-associated molecular patterns (PAMPs) derived from microorganisms, and damage-associated molecular patterns (DAMPs) derived from normal cells subjected to injury, inflammation, or cell apoptosis under physiological or pathological conditions. Emerging studies reported that TLR signaling plays an important role in bone remodeling by directly impacting MSC osteogenic differentiation or osteoimmunology. However, how to regulate TLR signaling is critical and remains to be elucidated to promote the osteogenic differentiation of MSCs and new bone formation for bone tissue repair. This review outlines distinct TLR variants on MSCs from various tissues, detailing the impact of TLR pathway activation or inhibition on MSC osteogenic differentiation. It also elucidates TLR pathways' interplay with osteoclasts, immune cells, and extracellular vesicles (EVs) derived from MSCs. Furthermore, we explore biomaterial-based activation to guide MSCs' osteogenic differentiation. Therefore, understanding TLRs' role in this context has significant implications for advancing bone regeneration and repair strategies.

18.
ACS Appl Mater Interfaces ; 15(48): 55409-55422, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37942935

RESUMO

Periodontal bone defect is a common but longstanding healthcare issue since traditional bone grafts have limited functionalities in regulating complex intraoral microenvironments. Here, a porous cationic biopolymeric scaffold (CSC-g-nHAp) with microenvironment self-regulating ability was synthesized by chitosan-catechol chelating the Ca2+ of nanohydroxyapatite and bonding type I collagen. Chitosan-catechol's inherent antibacterial and antioxidant abilities endowed this scaffold with desirable abilities to eliminate periodontal pathogen infection and maintain homeostatic balances between free radical generation and elimination. Meanwhile, this scaffold promoted rat bone marrow stromal cells' osteogenic differentiation and achieved significant ectopic mineralization after 4 weeks of subcutaneous implantation in nude mice. Moreover, after 8 weeks of implantation in the rat critical-sized periodontal bone defect model, CSC-g-nHAp conferred 5.5-fold greater alveolar bone regeneration than the untreated group. This cationic biopolymeric scaffold could regulate the local microenvironment through the synergistic effects of its antibacterial, antioxidant, and osteoconductive activities to promote solid periodontal bone regeneration.


Assuntos
Quitosana , Osteogênese , Camundongos , Ratos , Animais , Quitosana/farmacologia , Antioxidantes/farmacologia , Camundongos Nus , Tecidos Suporte , Durapatita/farmacologia , Regeneração Óssea , Antibacterianos/farmacologia , Catecóis/farmacologia
19.
ACS Nano ; 17(23): 23498-23511, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37971533

RESUMO

Rapid endothelialization of cardiovascular materials can enhance the vascular remodeling performance. In this work, we developed a strategy for amyloid-like protein-assembly-mediated interfacial engineering to functionalize a biomimetic nanoparticle coating (BMC). Various groups (e.g., hydroxyl and carboxyl) on the BMC are responsible for chelating Zn2+ ions at the stent interface, similar to the glutathione peroxidase-like enzymes found in vivo. This design could reproduce the release of therapeutic nitric oxide gas (NO) and an aligned microenvironment nearly identical with that of natural vessels. In a rabbit abdominal aorta model, BMC-coated stents promoted vascular healing through rapid endothelialization and the inhibition of intimal hyperplasia in the placement sites at 4, 12, and 24 weeks. Additionally, better anticoagulant activity and immunomodulation in the BMC stents were also confirmed, and vascular healing was mainly dependent on cell signaling through the cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) cascade. Overall, a metal-polypeptide-coated stent was developed on the basis of its detailed molecular mechanism of action in vascular remodeling.


Assuntos
Muramidase , Nanopartículas , Animais , Coelhos , Remodelação Vascular , Zinco , Materiais Revestidos Biocompatíveis/farmacologia , Stents , Compostos Orgânicos
20.
Regen Biomater ; 10: rbad089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020236

RESUMO

Recombinant humanized collagen (rhCol) was an extracellular matrix (ECM)-inspired biomimetic biomaterial prepared by biosynthesis technology, which was considered non-allergenic and could possibly activate tissue regeneration. The influence of tag sequence on both structures and performances of rhCol type III (rhCol III) was investigated, and the effect of rhCol III on cell behaviors was evaluated and discussed using Schwann cells (SCs) as in vitro model that was critical in the repair process after peripheral nerve injury. The results demonstrated that the introduction of tag sequence would influence both advanced structures and properties of rhCol III, while rhCol III regulated SCs adhesion, spreading, migration and proliferation. Also, both nerve growth factor and brain-derived neurotrophic factor increased when exposed to rhCol III. As the downstream proteins of integrin-mediated cell adhesions, phosphorylation of focal adhesion kinase and expression of vinculin was up-regulated along with the promotion of SCs adhesion and migration. The current findings contributed to a better knowledge of the interactions between rhCol III and SCs, and further offered a theoretical and experimental foundation for the development of rhCol III-based medical devices and clinical management of peripheral nerve injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...